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Chapter 13. Manufacturing
Models

13.1. Manufacturing Models Introduction

13.2. Manufacturing Operations Design

Unit Process Concept
A unit process is an elemental modification of material or process status done
essentially without interruption.

A unit process specifies WHAT, not HOW it needs to be done.  A unit process does
not specify a machine but rather specifies the transformation, i.e. "make a hole"
instead of "drill a hole".  It can be represented as a black box, which in turn can be
used as building blocks for the total manufacturing process.

Process Flow or Process Requirements

Transfer Diagrams and Transfer Equations
The process flows are determined based on the required quantity of finished product
and the production routing which includes the data on scrap and rework rates.  The
input flows for each process are computed backwards from the final output flow
based on the transfer diagram (and formulas) for each process.

The defect rate is the ratio of the number of defective parts to the number parts fed
into the system.  It is usually expressed as a percentage.  The complement of the
defect rate is the rate of good parts or yield rate.

The rework rate is the ratio of the number of parts that can be reprocessed to the total
number of defective parts.  It is usually expressed as a percentage.  The complement
of the rework rate is the scrap rate, i.e. the ratio of the number of parts leaving the
manufacturing system to be scrapped to the number of defective parts.  If the rework
rate is equal to zero, i.e. all defective parts leave the manufacturing process, then the
number of defective parts is equal to the number of scrapped parts and the scrap rate
is 100 %.
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The transfer diagram is a graphical representation of all the input and output flows
and their relationships of a single process.  The transfer formulas are the algebraic
equivalent of the diagram.

Several typical cases arise depending on the number of times a product can be
reworked before it has to be scrapped.  The transfer diagram and formulas for these
typical cases will be developed next.  Extensions and modifications are the
responsibility of the student.

The following notation will be used:

Ik = input flow of process k

Mk = manufacturing flow for process k, i.e. all parts to be processed

Ok = output flow of process k, i.e. good parts

Dk = defect flow of process k, i.e. defective parts

Sk = scrap flow of process k, i.e. scrapped parts leaving the system

dk = defect rate of process k

rk = rework rate of process k

sk = scrap rate of process k

No rework allowed.

In this case the defect flow is equal to the scrap flow. The transfer diagram and
formulas for a single process are given next.
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Figure 13.1. No Rework Transfer Diagram
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For a completely serial system, where the output of process k is used as the input for
process k + 1, a transfer formula for the complete system of N processes can be
derived based upon the following formulas.
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Assume that there are three machines with the following defect rates (0.04, 0.01,
0.03).  The required output from machine three is 97,000 parts per month.  Working
backwards from machine three, input for machine three is 97,000 / (1 - 0.03) =



Logistics Systems Design Chapter 13. Manufacturing Models • 221

100,000.  Similarly the input for machines two and one is 101,010 and 105,219,
respectively.

Infinite Rework Allowed.

In this case all the parts that can be reworked are added to the supply of new
unprocessed parts.  An example of such operation would be the turning of a
cylindrical part to a desired diameter.  Parts with a diameter within the tolerances are
accepted.  Parts with a diameter that is too large can be reworked.  If on the other
hand the diameter is too small, then the part has to be scrapped.  The transfer
diagram and formulas for a single process are given next.
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Figure 13.2. Infinite Rework Transfer Diagram
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For a completely serial system, where the output of process k is used as the input for
process k+1, a transfer formula for the complete system of N processes can be
derived based upon the following formulas.
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Observe that formulas (13.3) and (13.4) reduce to formulas (13.1) and (13.2)
respectively by setting the rework rate equal to 0, i.e. the no rework case.

Assume further in the example that the rework rate for all three machines is equal to
0.5.  Working backwards from machine three, input for machine three is 97,000 · (1 -
0.015) / (1 - 0.03) = 98,500.  Similarly the input for machines two and one is 98,998
and 101,060, respectively.

Limited Rework Allowed.

Sometimes a defective part can only be reprocessed a limited number of times.  An
example of such an operation would the turning as described above, but the turning
operation hardens the outer layer of the cylindrical part so that after two turning
operations the material becomes brittle and can no longer be turned.  The transfer
diagram is identical to the case of the unlimited rework case, but some of the paths
can only be followed a finite number of times.  The number of parts input into the
machine on subsequent passes is equal to I, I(rd), I(rd)(rd)..  If the number of rework
passes is limited to L, then the transfer diagram and formulas are given by
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Figure 13.3. Limited Rework Transfer Diagram
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For a completely serial system, where the output of process k is used as the input for
process k + 1, a transfer formula for the complete system of N processes can be
derived based upon the following formulas.
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Assume further in the above example that the maximum number of times a part can
be reworked is equal to three.  Working backwards from machine three, input for
machines three, two and one is 98,500, 98,998 and 101,060, respectively.

Assembly Operations

A more complicated example of the computation of process requirements is given in
the examples.
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Figure 13.4.  Assembly Operation Transfer Diagram

An example of the assembly transfer equations for a particular case of assembly
operations is given next:
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Machine and Department Space Requirements
Space requirements per machine are based on industry norms and health and safety
rules.  The number of machines required can be computed based on the required
flows through that machine and on the manufacturing data included in the production
routing sheet.

The following notation will be used:

N j = required number of machines of type j

Si = standard manufacturing time for product i

Mi = number of units to be processed per shift of product i

H = amount of time available in the planning period

R j = reliability of machine j, expressed as percent up time

x = ceiling function which returns the smallest integer larger than or equal to
x.

Eij = efficiency of machine j for product i expressed as a percentage, i.e. it is

the ratio of the standard time Si  divided by the real time for producing product i on
machine j.  Can the efficiency be larger than 100 %?

The number of machines required of type j is then given by the following formula
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For example, 200 parts have to be produced per workday of 8 hours and each part
requires a standard time of 2.8 minutes.  The efficiency of the machine to be used to
product the parts equals .80 % and this machine is 95 % reliable.  The number of
machines requires is then (2.8 · 200) / (480 · 0.95 · 0.80) = 1.535 = 2.

Basic Sizing and Allocation Model

Sizing and Allocation Problem Characteristics
Jobs and Processors

Sizing and Allocation

Minimize Costs

Capacitated Processors

Deterministic Parameters and Constraints

Notation
M Jobs or Customers (i)

N Processors or Machines (j)

Fixed (f) and Variable (c) Costs
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Variable (r) Resource Requirements

Processor Capacities (s)

Required Completed Jobs (d)

Sizing (y) and Allocation (x) Variables

Basic Formulation
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Fixed Resource Requirement Model Extension
Assume that a fixed resource, denoted by the parameter g, is required as soon as any
job of type i is processed on a machine of type j.  The binary decision to process any
job of type i on a machine of type j is represented by the variable z.
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Strong Formulation
The allocation variables x represent the fraction of the total demand of job i allocated
to machine type j.
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Basic Queuing Formulas
The following expressions describing the main characteristics of queuing systems are
given in Ross (1993) and Giffin (1978).

Notation
Wq = expected waiting time in the queue

Lq = average length of the queue

Ws = expected system residence time

Ls = average number of customers in the system

Pn = the probability that upon arrival of a customer there are exactly n
customers already waiting in the queue

P n≥ = the probability that upon arrival of a customer there are n or more
customers already waiting in the queue

λ = arrival rate

µ = service rate per server

E x x( ), ,1 µ = average service time (first moment of the distribution of the
service time x)

E x x2 2e j, = average squared service time (second moment of the distribution

of the service time x)

σ µ2 21, ( )E x −e j= variance of the service time distribution

ρ = system utilization

The following equalities hold for all distributions

x2 2 21= +µ σb g (13.12)
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L Wq q= λ (13.13)

L Ws s= λ (13.14)

W Ws q= + 1 µ (13.15)

L Ls q= + λ µ (13.16)

Equation (13.13) is called Little’s Law.

M/M/1
In an M/M/1 queuing system the arrival process is a Poisson process with arrival rate
λ, i.e., the interarrival times are independent exponentially distributed random
variables with mean 1/λ.  The successive service times are assumed to be
independent exponential random variables having a mean of 1/µ.  The first M refers
to the fact that the interarrival process is Markovian and the second M refers to the
fact that the service distribution is exponential and the thus Markovian. The 1 refers
to the fact there is a single server.

The mean of an exponential distribution is equal to its standard deviation, or

σ = 1 u

ρ λ µ= / (13.17)

Wq =
−

λ
µ µ λ( )

(13.18)

Ws =
−
1

( )µ λ
(13.19)

L Ls q= + ρ (13.20)

P0 1 1= − = −λ µ ρ (13.21)

Pn
n= −1 λ µ λ µb gb g (13.22)

P≥ =1 λ µ (13.23)

P n
n

≥ = λ µb g (13.24)

M/M/k
The number of servers is equal to k.  There is a single waiting line and customers go
to the first available server.

ρ λ µ= / k (13.25)

W
k

k k
n k k

q

k

n k

n

k
=

− +
−

L
NMM

O
QPP=

−
∑

( )( )

! ( )
( )

!
( )

!( )

λ µ λ µ

λ λ µ λ µ λ µ
λ µ

1
1

2

0

1
(13.26)

W Ws q= + 1 µ (13.27)
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M/G/1
The successive service times are assumed to be independent random variables with a
general distribution.
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This Khintchine-Pollaczek formula for the expected waiting time in a M/G/1 queue
is also given, among others, in Giffin (1978).

Note that the variance of uniformly distributed random variable between the
boundary values a and b is equal to

σ2
2
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(13.29)

M/D/1
For a discrete service time distribution, the service time has a constant value and the
variance of the service time is equal to zero.
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This approximation is a very accurate approximation if the service time has a gamma
distribution and it is exact if the service time has an exponential distribution.

Manufacturing Operations Examples

Machine Requirements Example
General Hospital needs to replace their outdated x-ray equipment in order to compete
with other hospitals for a smaller patient population.  A x-ray machine may be used
for general x-rays as well as for special hip x-rays.  The time to convert the x-ray
machines from general x-ray to hip x-ray is 45 minutes, the time to convert from hip
x-ray to general x-ray is 15 minutes.  The x-ray machines cost $100,000 per machine
but they are very reliable.  The arrival of general and special hip x-ray patients is
random and may not be scheduled.  A general x-ray takes 12 minutes per patient and
there are 11,000 patients per year for this x-ray, a special hip x-ray takes 15 minutes
and there are 2,500 patients per year for this x-ray.  The x-ray machines are in use 8
hours per day, 300 days per year and have a reliability factor of 98 %.  The question
is how many x-ray machines should be purchased?  Based on the number of
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machines required we will discuss the organization of the x-ray department.  Finally,
we will estimate the expected waiting time for general x-ray patients, hip x-ray
patients and all patients combined for your solution, assuming the x-ray machines
have a reliability of 100 %.  This example was adapted from Tompkins and White
(1984).

We consider first the case where all patients join a single FIFO queue for set of
homogeneous multipurpose x-ray machines.  There are four distinct type of
operations performed depending on the combination of the previous and current x-
ray type.  The total number of patients is 11,000 + 2,500 = 13,500.  The fraction or
probability of general x-ray requests is 11,000  / 13,500 = 0.815.  The fraction or
probability of special hip x-rays is 2,500  / 13,500 = 0.185.  Since the patients arrive
randomly and may not be scheduled or arranged in the queue, the probability of a
general after general operation is then 0.815   0.815 = 0.664 and total number of
operations of this type is 13,500   0.664 = 8963.  The data for the four operations can
be summarized in the following table.

Table 13.1. X-Ray Operations Data Summary

Operation Type Probability Operations Unit Time Total Time
general after general 0.664 8963 12 min. 107,556 min.
general after hip 0.151 2037 27 min. 54,999 min.
hip after hip 0.034 463 15 min. 6,945 min.
hip after general 0.151 2037 60 min. 122,220 min.

The required number of machines is then
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Thus 3 machines are required and their average utilization rate is 68.9 %.

In the next section we will compute the expected waiting times for several
configurations and operating policies of the hospital ward, but this derivation might
be skipped at the undergraduate level.  We assume that the machines are 100 %
reliable.  First we compute the expected waiting time for three non-dedicated
machines and a single FIFO waiting line.  The formula for the expected waiting time
in queuing system with 3 servers is
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Observe that the average processing time for a general and hip x-ray patient,
respectively, is equal to

8963 12 2027 27
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But if the x-ray department was organized differently, we might be able to reduce the
number of machines by dedicating machines to operations and thus eliminating the
setup times.  Assuming that we dedicate a number of machines to general x-rays and
a number of machines to hip x-rays, the required number of machines of each type
are then:
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In this case we need only two machines, but the expected utilization of the general x-
ray machine is very high so the expected waiting times for that machine might not be
acceptable.  If the hospital decides to purchase three machines, then dedicating two
machines to general x-rays and one machine to hip x-rays will reduce the utilization
of all machines and improve patient service.

First we compute the expected waiting time if there are two dedicated machines with
two independent FIFO queues.  We can model this as two M/D/1 queues and .  The
Khintchine-Pollaczek formula for the expected waiting time in a M/G/1 queue is also
given, among others, in Giffin (1978).
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For the x-ray machines with a discrete service time, i.e., the standard deviation of the
service time is zero, the computations then yield the following expected waiting
times:
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The expected waiting time for the single general x-ray machine might not be
acceptable to the hospital.  We next compute the expected waiting for general x-rays
if two machines are dedicated to general x-rays.  The expected waiting time in a
M/G/2 queuing system with discrete service times is given in Ross (1993) as:
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The expected waiting time for general x-ray patients if there are two machines
dedicated to general x-rays is then:
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The waiting time computations illustrate again that if three machines are purchased,
patient service is improved if two of them are dedicated to general x-rays and one of
them is dedicated to hip x-rays.

Assume that the annualized cost of a x-ray machine is $75,000, $95,000, and
$135,000 for a general x-ray, hip x-ray, and mixed use x-ray machine, respectively.
Assume further, that the cost for performing a general x-ray on a general x-ray
machine is $55 and is $75 on a mixed use x-ray machine, and the cost of performing
a hip x-ray on a hip x-ray machine is $85 and $105 on a mixed use x-ray machine,
respectively.  Develop the sizing and allocation model for this system that will
minimize the total yearly cost.  Clearly define all set, variables, parameters, and
constraints.  Compute the parameter values.  Solve the model to optimality.  Discuss
the optimal solution.
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Process, Product, and Machine Requirements
Example
Given the manufacturing data in the following production table, the object is to
compute the product flows of products x, y, and z in the manufacturing facility, the
required number of machines, and the required number of support materials u and v
to produce parts x, y and z.  Each time a machine processes a part it requires new
support materials as indicated in the Table 13.2 below.  Machine A can rework its
products an unlimited number of times.  Machine B can only rework its products
twice, after the third pass all defective parts are scrapped.  The required production
for product z is 100,000 parts a year.  The manufacturing plant is fully automatic.
Two parts x plus one part y are assembled to one part z on machine C.  The assembly
procedure behaves as a perfect process, i.e., it has a zero defect rate.  The
manufacturing plant operates 50 weeks per year, five days a week, one shift of eight
hours a day.  The standard production times are given in the Table 13.2 and are
expressed in hours.

x

y

A

B

x

y

B

A

x

y

C Az z=100,000

Figure 13.5. Assembly Chart For Process Design Example

Table 13.2. Production Characteristics

Machine A Machine B
part x standard time 0.005 0.015
part y standard time 0.01 0.025
part z standard time 0.025
part x defect rate 10% 70%
part y defect rate 3% 50%
part z defect rate 5%
part x rework rate 70% 40%
part y rework rate 80% 30%
part z rework rate 90%
part x support materials 2u v
part y support materials 2v u
part z support materials u + v
part x efficiency 95% 90%
part y efficiency 92% 98%
part z efficiency 94%
reliability factor 93% 91%

Using the formulas for infinite rework for machine A and for limited rework for
machine B and the assembly equation, the input flows are equal to:

IZA
= ⋅ − ⋅

−
=100 000 1 0 05 0 9

1 0 05
100 527

, ( . . )
( . )

,
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The product flows can now be summarized in the following multiproduct process
chart and in a from-to matrix.
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Figure 13.6. Multiproduct Process Chart

Table 13.3. From-To Matrix

IN A B C OUT
IN - 509.8 172.5
A - 493.4 100.5 100
B 101.1 - 201
C 100.5 -

OUT -

To compute the required support materials we have to use the manufacturing flows
since each processing step requires support materials, whether it produces good or
defective parts.  The manufacturing flows in function of the input flows for machines
A and B are given by

M
I
rdA =

−( )1
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The required support materials can be easily computed based on the following table.

Table 13.4. Support Materials Computation

Flow Symbol Flow Value Support u Support v
MZA 105264 105264 105264
MXB 670181 670181
MYA 103637 207274
MXA 548179 1096358
MYB 202299 202299
Total 1403921 982719

The required number of machines can now be computed based on the manufacturing
flows and the production data.

N A =
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⋅ ⋅ ⋅

L

M
MMM

O

P
PPP =

⋅
L
MM

O
PP = =

548179 0 005
0 95

103637 010
0 92

105264 0 025
0 94

50 5 8 0 93
68112

2000 0 93
3662 4

.
.

.
.

.
.

.
.
.

.

N B =
⋅ + ⋅

⋅ ⋅ ⋅

L

M
MMM

O

P
PPP =

⋅
L
MM

O
PP = =

670181 0 015
0 90

202299 0 025
0 98

50 5 8 0 91
16330 4

2000 0 91
8 973 9

.
.

.
.

.
.
.

.

If the required cost data are provided, the total production cost can now be computed
from the required input parts, required support materials, and machine usage.

Assume that the annualized cost of a machine of type A, B, and C is $100,000,
$50,000, and $500,000, respectively.  Further assume that the purchase cost of a
single unit of component u and v is $0.5 and $2, respectively.  The production costs
of a single unit of the different products on the different machines is given in Table
13.5, where the assembly cost is expressed in units of product Z assembled on
machine C.
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Table 13.5. Marginal Production Costs

A B C
X $0.03 $0.15
Y $0.25 $0.10
Z $0.05 $0.50

Develop the sizing and allocation model for this system that will minimize the total
yearly cost.  Clearly define all set, variables, parameters, and constraints.  Compute
the parameter values.  Solve the model to optimality.  Discuss the optimal solution.

Exercises
DryGoods, Inc. The Drygoods Corporation is a distributor of consumer products to a large number

of drugstores in the southeastern region of the United States.  Products are sold by
the case.  All the products for a single customer are stacked on one or more pallets
and then delivered daily by a dedicated fleet of trucks.  The order picking and
consolidation occurs from 12 until 6 AM, the delivery to the stores from 6 until 8
AM.  To reduce continuing labor shortage problems for this night shift operation, the
company is planning to purchase a number of large automated pallet-wrapper
machines.

Pallets are wrapped with a plastic film by connecting the film to the pallet and then
rotating the pallet while the film spool is raised from the bottom of the pallet to the
top of the boxes stacked on the pallet.  Depending on the number of boxes stacked on
the pallet, the pallets can be classified as low, medium, or high pallets and denoted
with subscripts 1, 2, and 3, respectively.  The processing times for the three different
pallet types are 1.0, 1.5, and 2 minutes, respectively.  The expected number of pallets
that need to be shipped of each pallet type are 8, 24, and 16 pallets per hour,
respectively.  The required length of plastic wrap for wrapping each of the three
different pallet styles is 12, 18, and 24 meters, respectively.  The cost per meter of
plastic wrap is $0.03.  The total cost for one wrapper is $0.50 per minute.  The
tension of the plastic film during the wrapping process may cause the boxes to shift
and extend beyond the pallet footprint.  This is called overhang.  In order for the
pallets to be transported by forklift truck into the over-the-road trailers there is a
limit on the overhang of the boxes on a pallet.  The company estimates that 10 % of
the pallets will have excessive overhang after being wrapped.  If this occurs, the
wrapping is cut away and discarded, the boxes rearranged, and then the pallet joins
the waiting line to be wrapped again.  If the pallet-wrapper is rotated 25 % slower,
the company estimates that only 4 % of the pallets will have excessive overhang.
The new pallets and pallets that need to be wrapped again join a single waiting line
in front of the one or more pallet wrappers.  The company wants to know what the
average number of pallets waiting to be wrapped will be, since it has to provide
space for the waiting pallets. The equivalent hourly cost for one waiting space is
$0.10.  The company is requesting your assistance in computing the total cost of the
wrapping operations for the fast and slow rotation speeds.  The company is
requesting a clear reporting of the various cost categories and a recommendation for
the selection of the speed.
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Friendly Fried Food, Inc. The Friendly Fried Food Corporation uses a number of deep fryers to fry fish and
French fries, which then are frozen and offered for sale in supermarkets.  The oil in
the deep fryer must be changed between the frying of fish and French fries.  In
addition, the oil in the deep fryer must also be changed after that oil has been used
for an hour.  The changeover times refer to the time required to clean and refill the
deep fryer after a batch of that particular product type.  The fish and French fries are
produced by different and independent cleaning and preparation lines before they
arrive at the common deep fryer.  Fish and French fries are processed 4 hours a day,
200 days per year.  Each fryer is 93 % reliable.  Each batch waiting for the deep
fryer requires a four feet by four feet staging area.  This space includes all aisle and
clearance space.  The annual cost for a fryer is $100,000 and the annual cost per
square foot of waiting area is $6.0.  The company is trying to minimize the annual
cost of the frying operation while satisfying throughput requirements.

Given the process data in the following table, how many deep fryers does the
Friendly Food Facility need to fry the fish and the French fries?  How should the
Friendly Food Facility organize their frying operation?  Compute the required
waiting space for the operation of the deep frying department.  Do all computations
to four significant digits and round intermediate results to four significant digits.
Please answer in a clear and organized fashion.  Show the formulas that you used for
each intermediate result.  Place the numerical intermediate results in a box.  Justify
the formulas that you have used.  Show both formulas and numerical values clearly
marked in a box.  Finally, summarize your results in a clear table suitable for
presentation to the executive committee of the Friendly Fried Food Corporation .

Table 13.6. Deep Frying Process Data

Fish French Fries
Standard Time 3 min 6 min
Annual Batches 4000 5000
Efficiency 105% 95%
Change Times 9 min 4 min

Optimal Batch Size
From the marketing and sales department point of view, the best batch size is equal
to one.  This is equivalent to a make-to-order policy or demand driven production
and gives the sales department the greatest flexibility.  However, such small batch
sizes might not be efficient for the manufacturing department if there are significant
setup costs.  For example, a customer could walk into a car dealership, "assemble"
his own car from the available options.  This would be acceptable to the customer
with a manufacturing lead time of one week and a delivery lead time of a week.
Current realistic lead times for this scenario are much longer.  Business corporations
have identified the capability to manufacture on demand rather than to inventory as a
major competitive advantage.  This manufacturing philosophy is called "mass
customization".

An example of either extreme point of the spectrum of manufacturing technology is
given next.  Henry Ford is attributed the quote that “the customer could order a car in
any color he desired, as long it was black” illustrating the state of the art in the
automotive assembly process of the model T.  This statement is a reflection that a
single product is easier and more efficient to manufacture.  On the other hand,
captain Jean-Luc Picard of the starschip enterprise in “Star Trek: the Next
Generation” can order a single cup of strong tea which is immediately delivered by
the replicator in his quarters.  This level of manufacturing flexibility and efficiency
only exists in science fiction.
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In computing the optimal batch size in production operations from the manufacturing
point of view, we will use the following definitions:

T = Production cycle which repeats indefinitely.

R = Production time for the product being evaluated

Q = Production batch size for this product

M = Maximum inventory of this product during the production cycle

d = Product demand rate

p = Product production rate (p > d)

IC = Total inventory cost

MC = Total manufacturing cost

TC = Total cost

HC = Inventory holding cost per cycle per product unit

FC = Fixed costs for starting production of a batch of this product

VC = Variable (marginal) cost for production of one unit of this product

ic = Inventory cost per unit

mc = Manufacturing cost per unit

tc = Total unit cost

The inventory pattern over a cycle T is given in the next Figure.

R
T

Q

M

time

inventory

Figure 13.7. Inventory Pattern in Production Systems

We first compute the maximum product inventory:
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KJ1 (13.34)

Next we compute the total costs over a full cycle:
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We then compute the unit costs:
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We find the optimal batch size by setting the first derivative equal to zero:
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This is a generalization of the standard “Economic Order Quantity” or EOQ formula
for which the production rate is infinite.  The optimal batch size can then also be
called the “Economic Production Quantity” or EPQ for a finite production rate.

The optimal total cost is then given by:
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Most of the factors in this equation are beyond the control of the production system.
For example, the inventory holding cost HC is determined by the cost of capital and
storage in the facility.  The only way to reduce the optimal, efficient batch size is
then to reduce the fixed or setup cost.

The minimization by taking the first derivative and setting it to zero is valid since the
second derivative is positive and this proves that tc is convex with respect to Q.
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Note that FC(Q*) = IC(Q*) and fc(Q*) = ic (Q*).
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